Hertentamen Kansrekening - Open book

Friday 23 August 2006

1. Let X be a random variable taking positive values with density $f_{X}(x)$. Let $Y=\frac{1}{X+2}$. What is the density for Y ?
Solution: Using the transformation formula for densities, noting that the function $x \mapsto 1 /(x+2)$ is bijective from the positive reals to [$0, \frac{1}{2}$) we get

$$
f_{Y}(y)=f_{X}(1 / y-2) \frac{1}{y^{2}}
$$

2. Let X and Y be independent random variables taking values in $\{1,2, \ldots$, with

$$
P(X=i)=P(Y=i)=\frac{1}{2^{i}}
$$

a) Use the formula $\sum_{j=0}^{\infty} q^{j}=\frac{1}{1-q}$ to check that this defines a probability weight function.
b) Show that $P(X=Y)=\frac{1}{3}$
c) Compute $P(\min (X, Y) \geq i)$

Solution

(a)

$$
\sum_{i=1}^{\infty} \frac{1}{2^{i}}=\frac{1}{2} \sum_{i=0}^{\infty} \frac{1}{2^{i}}=\frac{1}{2} \frac{1}{1-\frac{1}{2}}=1
$$

(b)

$$
\sum_{i=1}^{\infty}\left(\frac{1}{2^{i}}\right)^{2}=\sum_{i=1}^{\infty} \frac{1}{4^{i}}=\frac{1}{4} \frac{1}{1-\frac{1}{4}}=\frac{1}{3}
$$

(c) Because of independence we have the following equality

$$
P(\min (X, Y) \geq i)=P(X \geq i) P(Y \geq i)
$$

Note that

$$
P(X \geq i)=\sum_{j=i}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{i}} \sum_{j=0}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{i}} \frac{1}{2}
$$

So the result becomes

$$
P(\min (X, Y) \geq i)=\frac{1}{4^{i-1}}
$$

3. Let X, Y, Z be independent random variables, uniformly distributed on the interval $[0,1]$.
a) Determine the density of the random variable $X Y$.
b) Determine the density of the random variable $X Y Z$.

Solution:

(a) For u between zero and one we have

$$
P(X Y \leq u)=P(X \leq u)+\int_{u}^{1} P\left(Y \leq \frac{u}{x}\right) d x
$$

Note in this decomposition that $X \leq u$ implies $X Y \leq u$, no matter what value Y is taking. From this we compute

$$
P(X Y \leq u)=u+\int_{u}^{1} \frac{u}{x} d x=u-u \log u
$$

From this result we get the density by differentiation

$$
f_{X Y}(u)=-\log u
$$

(b) For v between zero and one we have

$$
P(X Y Z \leq v)=P(X Y \leq v)+\int_{v}^{1} P\left(Z \leq \frac{v}{u}\right) f_{X Y}(u) d u
$$

Next we use the result of (a) to get

$$
P(X Y Z \leq v)=-\log v+\int_{v}^{1} \frac{v}{u}(-\log u) d u
$$

We compute the integral with the substitution $\log u=s$ and we get

$$
P(X Y Z \leq v)=v-v \log v+\frac{v}{2}(\log v)^{2}
$$

By differentiation the density becomes from this

$$
f_{X Y Z}(v)=\frac{(\log v)^{2}}{2}
$$

4. Let A_{n} be an increasing sequence of events. (This means $A_{n} \subset A_{n+1}$ for all n). Denote $A=\bigcup_{n=1}^{\infty} A_{n}$. Let B be an event with $P(B)>0$. Show that $\lim _{n \uparrow \infty} P\left(A_{n} \mid B\right)=P(A \mid B)$.

Solution:

$$
\begin{aligned}
& \lim _{n \uparrow \infty} P\left(A_{n} \mid B\right) \\
& =\lim _{n \uparrow \infty} \frac{P\left(A_{n} \cap B\right)}{P(B)} \\
& =\frac{1}{P(B)} \lim _{n \uparrow \infty} P\left(A_{n} \cap B\right) \\
& =\frac{1}{P(B)} P\left(\cup_{n}\left(A_{n} \cap B\right)\right) \\
& =\frac{1}{P(B)} P\left(\left(\cup_{n} A_{n}\right) \cap B\right) \\
& =\frac{1}{P(B)} P(A \cap B) \\
& =P(A \mid B)
\end{aligned}
$$

The justification of the equality signs is as follows: 1: Definition of elementary conditional probability, 2: Compatibility of limit of a sequence with multiplication, 3: Continuity of a probability measure, applied to the probability measure $P, 4$: set-operation, 5 : definition of event $A, 5$: Definition of elementary conditional probability
5. Let X and Y be independent Poisson random variables with parameters λ_{X} and λ_{Y}.
a) What is the distribution of $X+Y$?
b) What is the conditional distribution of X given $X+Y=k$?
c) Can you formulate an extension of the results in a) and b) to n independent Poisson random variables?
Solution: This exercise was already treated in the werkcolleges.
a) Poisson with parameter $\lambda_{X}+\lambda_{Y}$
b) Binomial with parameter $p=\frac{\lambda_{X}}{\lambda_{X}+\lambda_{Y}}$
c) The sum of n independent Poisson variables with parameters λ_{i} is distributed according to a Poisson distribution with $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
The conditional distribution of $\left(X_{1}, \ldots, X_{n}\right)$ given the sum $X_{1}+\cdots+$ $X_{n}=k$ is a multinomial distribution with parameters $p_{i}=\frac{\lambda_{i}}{\lambda_{1}+\cdots+\lambda_{n}}$ and number of trials equal to k.

